Robotic Vehicles

Robotic vehicles study group:
Arthur Sanderson, Rensselaer Polytechnic Institute (Presenter)
George Bekey, University of Southern California
Brian Wilcox, NASA Jet Propulsion Laboratory

I. What are Robotic Vehicles?

Machines that move “autonomously” on the ground, in the air, under the sea or in space

Robotic vehicles are “Unmanned”, either remotely operated or fully autonomous.
Why are Robotic Vehicles Important?

Go where people can’t go -
- space, oceans, …

Hazardous environments
- contaminants, military, …

Do tasks over large spaces -
- agriculture, environment, …
- urban and built environments

How? What technology is needed?

<table>
<thead>
<tr>
<th></th>
<th>Engineering Design</th>
<th>Biomimetic Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WTEC Robotics Study: Robotic Vehicles
How? What technology is needed?

<table>
<thead>
<tr>
<th></th>
<th>Engineering Design</th>
<th>Biomimetic Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: NASA Mars Rover

- Remote Hostile Environment
- Large Scale Exploration
- Sensors and Navigation
- Autonomous Power

Example: Deep Ocean Exploration

- Remote and Hazardous Environment
- Sensors and Visual Linkage
- Tethered or Untethered Operation

- Titanic Exploration –

 Alvin and Jason Undersea Robotic Vehicles
Example: Deep Ocean Exploration

- Remote and Hazardous Environment
- Sensors and Visual Linkage
- Tethered or Untethered Operation

II. Research Challenges

- Mechanisms and Mobility
- Power and Propulsion
- Computation and Control
- Sensors and Navigation
Mechanisms and Mobility

Principles of Motion
- wheels vs legs
Analysis of Movement
- walking gaits
Materials
- weight, compliance
Power and Propulsion

Source of Power
- duration
- efficiency
e.g. batteries, fuel cells

Harvesting Energy
e.g. solar cells

Efficiency and Energy Management

Computation and Control

Embedded computer systems create “intelligent” computer architectures, organizing sensor-based feedback and control actions.
Sensors and Navigation

- Where am I?
- Do I have a map?
- How do I move to accomplish a task?

Example: Military Navigation

- Multiple Vehicles: Land, Sea, Air
- Dynamic Coordination
- Large Scale Operations
- Sensor Feedback and Assessment
- Human Interaction
III. International Survey

U.S. – Robotic Vehicles

- Military and Defense Systems
- Space Robotics
- Agriculture and Field Robotics
- Undersea Vehicles – Science and Security
- Search and Rescue Robotics
U.S. – Robotic Vehicles

U.S. – Military and Defense Robotics
U.S. – Field Robotics

- Mining
- Agriculture
- Hazardous Environments

U.S. – Undersea Robotics

- AUV – Environment and Coastal Security
- Deep Sea Missions – Science
U.S. – Search and Rescue Robotics

- Hazardous Missions
- Rapid Response
- Human Interaction

Japan/Korea – Robotic Vehicles

- Personal and Service Robotics
- Biomimetic Mobility
- Undersea Vehicles and Systems
Japan/Korea – Personal and Service

- Household
- Eldercare
- Security and Surveillance
 - Search and Rescue Robotics
- Entertainment

Japan/Korea – Biomimetic Mobility

- Locomotion
- Humanoid Walking
Japan/Korea – Biomimetic Mobility

• Locomotion
• Humanoid Walking

Japan/Korea – Biomimetic Mobility

• Insect Motion
• Swimming
• Energy Sources
Japan/Korea – Biomimetic Mobility

- Insect Motion
- Swimming
- Energy Sources

Japan/Korea – Undersea Robotics

- Deep Ocean Science
- AUV Technologies
Europe – Robotic Vehicles

- Navigation and Architectures
- Transportation Systems
- Personal and Service Robotics
- Undersea Vehicles

Europe – Navigation and Architecture

- Sensor-Based Navigation
- Vehicle Control Systems
- Infrastructure Applications
Europe – Navigation and Architecture

- Sensor-Based Navigation
- Vehicle Control Systems
- Infrastructure Applications

Europe – Transportation Systems

- Vision-Based Vehicle Control
- Urban Transport Systems
- Navigation and Mapping in Structured Environments
Europe – Personal and Service Robotics

- Household Robotics
- Rehabilitation and Eldercare
- Search and Rescue Robotics

Europe – Undersea Robotics

- AUV Systems
- Deep Ocean Science
- Oil and Gas Industry Applications
Europe – Undersea Robotics

RESEARCH PRIORITIES in ROBOTIC VEHICLES

US
Outdoor Vehicular Mobility: Ground, Air, Undersea
Navigation and Mapping in Complex Outdoor Environments
 Key Applications: Defense, Space

Japan/Korea
Indoor Mobility using humanoid locomotion
Novel mechanisms of locomotion
 Key Applications: Service, Entertainment, Commercial Applications

Europe
Mobility in urban and built environments
Sensor-based Navigation with maps
 Key Applications: Infrastructure support and transportation

IV. Comparative Review
Comparative Analysis: Robotic Vehicles

<table>
<thead>
<tr>
<th>AREA</th>
<th>US</th>
<th>JAPAN/KOREA</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td>**</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>Power</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Architecture</td>
<td>****</td>
<td>**</td>
<td>*****</td>
</tr>
<tr>
<td>Navigation</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>*</td>
<td>****</td>
<td>**</td>
</tr>
<tr>
<td>Field</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Military</td>
<td>****</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Personal/Service</td>
<td>**</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>Space</td>
<td>****</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Transportation</td>
<td>**</td>
<td>***</td>
<td>*****</td>
</tr>
<tr>
<td>Undersea</td>
<td>****</td>
<td>***</td>
<td>*****</td>
</tr>
</tbody>
</table>

WTEC Robotics Study: Robotic Vehicles
Comparative Analysis: Robotic Vehicles

<table>
<thead>
<tr>
<th>AREA</th>
<th>US</th>
<th>JAPAN/KOREA</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Power</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
<td>**</td>
<td>****</td>
</tr>
<tr>
<td>Navigation</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Field</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Military</td>
<td></td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Personal/Service</td>
<td>**</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Space</td>
<td></td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Transportation</td>
<td>**</td>
<td>***</td>
<td>****</td>
</tr>
<tr>
<td>Undersea</td>
<td>***</td>
<td>****</td>
<td></td>
</tr>
</tbody>
</table>
Robotic Vehicles: Summary

- US leadership in robotic vehicles has been strongly dependent on federal mission-oriented programs (DOD, NASA,…), and continuity of investment in basic research will be critical.
- US lags in the identification of strategic priorities that could translate vehicle capabilities to innovative commercial, industrial, and civil infrastructure applications.
- Japan and Korea have aggressive national plans and investment to develop mobile robots supporting personal and service applications, including healthcare and eldercare.
- The European community has developed strategic plans that coordinate vehicle programs and emphasize civilian and urban infrastructure, as well as some space applications.

Robotic Vehicles: Future Challenges

- Multivehicle Systems
 - Distributed Sensor Networks and Observatories
- Long-Term Reliable Deployment
- Micro and Nanoscale Mobility
- Efficient and Independent Power
- Human-Robot Vehicle Interactions
 - Service and Entertainment