The cover picture suggests the integration of various nanotechnology-based solutions in the design of a blended hybrid-wing-body concept for future subsonic commercial aircraft. It represents a radical departure from conventional subsonic aircraft design. Mechanical and thermal insulation properties of the nanocomposite will allow for “morphing” airframe and propulsion structures that can change their shape or properties on demand to improve aerodynamic efficiency and respond to damage. Composite materials derived from low density, high strength carbon nanotube-based fibers and durable nanoporous matrixes will enable the production of ultra-lightweight multifunctional airframes and with embedded lightning strike protection. Nanotexturing will create surfaces that are naturally resistant to ice accretion thereby eliminating the need for runway deicing and in-flight ice mitigation. Replacement of heavy copper wiring cables with carbon nanotube wires will enable significant reductions in aircraft weight. Distributed autonomous networks of nanotechnology based state sensors powered by high efficiency energy harvesting (thermoelectric, piezoelectric, or photovoltaics) will enable real-time monitoring of the overall health and performance of the aircraft leading to reduced emissions and noise and improved safety. The design, developed by NASA and Massachusetts Institute of Technology, is for a 354 passenger aircraft that would be available for commercial use in 2030-2035 and would enable a reduction in aircraft fuel consumption by 54% over a Boeing 777 baseline aircraft. (Courtesy of NASA and MIT)
WTEC Panel Report on

Nanotechnology Research Directions for Societal Needs in 2020
Retrospective and Outlook

September 30, 2010

Editors
Mihail C. Roco
Chad A. Mirkin
Mark C. Hersam

Copyright 2010 by WTEC. The U.S. Government retains a nonexclusive and nontransferable license to exercise all exclusive rights provided by copyright. This document is sponsored by the National Science Foundation (NSF) under a cooperative agreement from NSF (ENG-0844639) to the World Technology Evaluation Center, Inc. The first co-editor was supported by the NSF Directorate for Engineering. The Government has certain rights in this material. Any writings, opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the United States Government, the authors’ parent institutions, or WTEC. A selected list of available WTEC reports and information on obtaining them appears on the inside back cover of this report. This document is available at http://www.wtec.org/nano2.
ACKNOWLEDGEMENTS

We at WTEC wish to thank all the participants for their valuable insights and their dedicated work in conducting this international study of nanoscience and nanotechnology. Appendix B has a complete list of the “cast of thousands” of experts around the world who shared their valuable time with us. The expert panelists who wrote chapters of this report need specific mention: Dawn Bonnell, Jeff Brinker, Mark Hersam, Evelyn Hu, Mark Lundstrom, Chad Mirkin, André Nel, and Jeff Welser. They were assisted in the writing by Mamadou Diallo, James Murday, Mark Tuominen, and Stuart Wolf.

For making this study possible, our sincere thanks go to the many who contributed some of their research funds: Michael Reischman NSF/ENG, Clark Cooper and Shaochen Chen NSF/CMMI, Robert Wellek NSF/CBET, Robert Trew and Pradeep Fulay NSF/ECCS, Christine Rohlfing NSF/MPS, Shankar Basu NSF/CISE, and Hongda Chen USDA/NIFA. Our international hosts supported the costs of the workshops abroad, and provided unparalleled hospitality. Among others, they included in Hamburg: Christos Tokamanis, EU; Helmut Dosch, DESY—in Tsukuba: Kazunobu Tanaka, JST, Japan; Jo-Won Lee, MEST, Korea; Maw-Kuen Wu, NSC, Taiwan—and in Singapore: Freddy Boey, Nanyang Technological University, Singapore; Chennupati Jagadish, Australian National University; Chen Wang, National Center for Nanoscience and Technology (NCNST), China; Jayesh R. Bellare, IIT Bombay, India; Salman Alrokayan, King Abdullah Institute for Nanotechnology, Saudi Arabia.

And, of course, Mike Roco provided the guiding light for the whole effort, very much engaged in coordination, writing and editing, and in pushing everyone along to get the best possible results.

R. D. Shelton
President, WTEC

WTEC Mission

WTEC provides assessments of international research and development in selected technologies under awards from the National Science Foundation (NSF), the Office of Naval Research (ONR), and other agencies. Formerly part of Loyola College, WTEC is now a separate nonprofit research institute. Michael Reischman, Deputy Assistant Director for Engineering, is NSF Program Director for WTEC. WTEC’s mission is to inform U.S. scientists, engineers, and policymakers of global trends in science and technology. WTEC assessments cover basic research, advanced development, and applications. Panelists are leading authorities in their field, technically active, and knowledgeable about U.S. and foreign research programs. As part of the assessment process, panels visit and carry out extensive discussions with foreign scientists and engineers abroad. The WTEC staff helps select topics, recruits expert panelists, arranges study visits to foreign laboratories, organizes workshop presentations, and finally, edits and publishes the final reports. See http://wtec.org for more information or contact Dr. R. D. Shelton at Shelton@ScienceUS.org.
EXTERNAL REVIEWERS TO THE STUDY

Eric Isaacs, Argonne National Laboratory
Martin Fritts, Nanotechnology Characterization Laboratory
Naomi Halas, Rice University
Robert Langer, MIT
Emilio Mendez, Brookhaven National Laboratory
Gunter Oberdörster, URMC
Gernot Pomrenke, AFOSR
David Shaw, SUNY Buffalo
Richard Siegel, RPI
Sandip Tiwari, Cornell University
George Whitesides, Harvard University

WORLD TECHNOLOGY EVALUATION CENTER, INC. (WTEC)

R. D. Shelton, President
V.J. Benokraitis, Vice President for Operations, Project Manager
Geoffrey M. Holdridge, Vice President for Government Services
Patricia Foland, Director of Information Systems
Grant Lewison (Evaluametrics, Ltd.), Advance Contractor, Europe
David Kahaner (Asian Technology Information Program), Advance Contractor, Asia
Patricia M. H. Johnson, Director of Publications
Haydon Rochester, Jr., Lead Editor
Nanotechnology Research Directions for Societal Needs in 2020

FOREWORD

Impacts, Lessons Learned, and International Perspectives for Nanotechnology to 2020

The accelerating pace of discovery and innovation and its increasingly interdisciplinary nature leads, at times, to the emergence of converging areas of knowledge, capability, and investment; nanotechnology is a prime example. It arose from the confluence of discoveries in physics, chemistry, biology, and engineering around the year 2000. At that time, a global scientific and societal endeavor was initiated, focused by two key factors: (1) an integrative definition of nanotechnology based on distinctive behaviors of matter at the nanoscale and the ability to systematically control and engineer those behaviors,\(^1\) and (2) articulation of a long-term vision and goals for the transformative potential of nanotechnology R&D to benefit society\(^2\) that included a twenty-year vision for the successive introduction of four generations of nanotechnology products.\(^3\) The definition and long-term vision for nanotechnology paved the way for the U.S. National Nanotechnology Initiative (NNI), launched in 2000, and also inspired sustained R&D programs in the field by Japan, Korea, the European Community, Germany, China, and Taiwan. In fact, over 60 countries established nanotechnology R&D programs at a national level between 2001 and 2004. A new wave of R&D investments by Russia, Brazil, India, and several Middle East countries began after the second generation of nanotechnology products came to market about 2006. The U.S. nanotechnology commitment is significant: cumulative NNI funding since 2000 amounts to more than $12 billion, including about $1.8 billion in 2010, placing the NNI second only to the space program in terms of civilian science and technology investment.\(^4\)

This report outlines the foundational knowledge and infrastructure development achieved by nanotechnology in the last decade and explores the potentials of the U.S. and global nanotechnology enterprise to 2020 and beyond. It aims to redefine the R&D goals for nanoscale science and engineering integration, and to establish nanotechnology as a general-purpose technology in the next decade. The vision for the future of nanotechnology presented here draws on scientific insights from U.S. experts in the field, examinations of lessons learned, and international perspectives shared by participants from 35 countries in 5 international brainstorming meetings hosted or co-hosted by the principal authors of this report.\(^5\) The report was peer reviewed and received input from various stakeholders’ public comments at the website http://wtec.org/nano2/. It aims to provide decision makers in academia, industry, and government with a nanotechnology community perspective of productive and responsible paths forward for nanotechnology R&D.

\(^5\) For more information, see Appendix A. U.S. and International Workshops.
Only ten years after adopting the definition and long-term vision for nanotechnology, the NNI and other programs around the world have achieved remarkable results in terms of scientific discoveries that span better understanding of the smallest living structures, uncovering the behaviors and functions of matter at the nanoscale, and creating a library of nanostructured building blocks for devices and systems. Myriad R&D results include technological breakthroughs in such diverse fields as advanced materials, biomedicine, catalysis, electronics, and pharmaceuticals; and expansion into new fields such as energy resources and water filtration, agriculture and forestry, and integration of nanotechnology with other emerging areas such as quantum information systems, neuromorphic engineering, and synthetic and system nanobiology. New fields have emerged such as spintronics, plasmonics, metamaterials, and molecular nanosystems. “Nanomanufacturing” is already under way and is a growing economic focus. Nanotechnology has come to encompass a rich infrastructure of multidisciplinary professional communities, advanced instrumentation, user facilities, computing resources, formal and informal education assets, and advocacy for nanotechnology-related societal benefit. Communication, coordination, research, and regulation efforts have gained momentum in addressing ethical, legal, and social implications (ELSI) and environmental, health, and safety (EHS) aspects of nanotechnology.

Many nanotechnology breakthroughs have begun to impact the marketplace: 2009 values for nanotechnology-enabled products are estimated at about $91 billion in the United States and $254 billion worldwide. Current developments presage a burgeoning economic impact: trends suggest that the number of nanotechnology products and workers worldwide will double every three years, achieving a $3 trillion market with 6 million workers by 2020. The governance mandate has broadened steadily so that in addition to promoting scientific discovery and technological innovation, it increasingly advances social innovation by proactively addressing many complex issues of responsible development of a new technology. Nanotechnology R&D has become a socio-economic target in all developed countries and in many developing countries—an area of intense international collaboration and competition.

And yet, nanoscale science, engineering, and technology are still in a formative stage, with most of their growth potential ahead and in still-emerging directions. Ambitious goals for several key scientific achievements over the next decade include an increase of about 5,000 times in X-ray source brilliancy for direct measurement of nanostructures and of about 10,000 times in computational capabilities of nanostructures. Key areas of emphasis over the next decade are:

- Integration of knowledge at the nanoscale and of nanocomponents in nanosystems with deterministic and complex behavior, aiming toward creating fundamentally new products
- Better control of molecular self-assembly, quantum behavior, creation of new molecules, and interaction of nanostructures with external fields in order to build materials, devices, and systems by modeling and computational design
- Understanding of biological processes and of nano-bio interfaces with abiotic materials, and their biomedical and health/safety applications, and nanotechnology solutions for sustainable natural resources and nanomanufacturing
- Governance to increase innovation and public-private partnerships; oversight of nanotechnology safety and equity building on nascent models for addressing EHS, ELSI, multi-stakeholder and public participation; and increasing international collaborations in the process of transitioning to new generations of nanotechnology products. Sustained support for education, workforce preparation, and infrastructure all remain pressing needs
Overall, it is predicted that continuing research into the systematic control of matter and a focus on innovation at the nanoscale will accelerate in the first part of the next decade, especially in the next five years, underpinning a growing revolution in technology and society. Nanotechnology already is having a major impact in the development of many sectors, ranging from electronics to textiles; by 2020, it will be a broad-based technology, seamlessly integrated with most technologies and applications used by the masses, driven by economics and by the strong potential for achieving previously unavailable solutions in medicine, productivity, sustainable development, and human quality of life.
TABLE OF CONTENTS

Acknowledgements .. ii
External Reviewers to the Study ... iii
Foreword .. iv
Table of Contents .. vii
Executive Summary .. xv

1. Outline of the Report .. xvi
2. Progress Since 2000 ... xvi
3. Vision for 2020 .. xxii
4. Strategic Priorities ... xxviii
5. Conclusions .. xxix

The Long View of Nanotechnology Development: The National Nanotechnology Initiative at Ten Years ... xl

6. 1. The Import of a Research-oriented definition of nanotechnology ... xl
7. 2. Indicators of Nanotechnology Development Globally, 2000–2020 ... xlii
8. 3. Two foundational steps in nanotechnology development ... xlv
9. 4. Genesis and Structure of the National Nanotechnology Initiative ... lxx
10. 5. Governance of Nanotechnology .. liv
11. 6. Lessons Learned ... lixin
12. 7. Closing Remarks ... lx
13. References .. lxxii
14. Citations .. lxxiii

Investigative Tools: Theory, Modeling, and Simulation .. 1
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>1.1 Vision for the Next Decade</td>
</tr>
<tr>
<td>16.</td>
<td>1.2 Advances in the Last Ten Years and Current Status</td>
</tr>
<tr>
<td>17.</td>
<td>1.3 Goals, Barriers, and Solutions for the Next 5–10 Years</td>
</tr>
<tr>
<td>18.</td>
<td>1.4 Scientific and Technological Infrastructure Needs</td>
</tr>
<tr>
<td>19.</td>
<td>1.5 R&D Investment and Implementation Strategies</td>
</tr>
<tr>
<td>20.</td>
<td>1.6 Conclusions and Priorities</td>
</tr>
<tr>
<td>21.</td>
<td>1.7 Broader Implications for Society</td>
</tr>
<tr>
<td>22.</td>
<td>1.8 Examples of Achievements and Paradigm Shifts</td>
</tr>
<tr>
<td>23.</td>
<td>1.9 International Perspectives from Site Visits Abroad</td>
</tr>
<tr>
<td>24.</td>
<td>1.10 References</td>
</tr>
<tr>
<td>25.</td>
<td>2.1 Vision for the Next Decade</td>
</tr>
<tr>
<td>26.</td>
<td>2.2 Advances in the Last Ten Years and Current Status</td>
</tr>
<tr>
<td>27.</td>
<td>2.3 Goals, Barriers, and Solutions for the Next 5–10 Years</td>
</tr>
<tr>
<td>28.</td>
<td>2.4 Scientific and Technological Infrastructure Needs</td>
</tr>
<tr>
<td>29.</td>
<td>2.5 R&D Investment and Implementation Strategies</td>
</tr>
<tr>
<td>30.</td>
<td>2.6 Conclusions and Priorities</td>
</tr>
<tr>
<td>31.</td>
<td>2.7 Broader Implications for Society</td>
</tr>
<tr>
<td>32.</td>
<td>2.8 Examples of Achievements and Paradigm Shifts</td>
</tr>
<tr>
<td>33.</td>
<td>2.9. International Perspectives from Site Visits Abroad</td>
</tr>
<tr>
<td>34.</td>
<td>2.10 References</td>
</tr>
<tr>
<td>35.</td>
<td>Enabling and Investigative Tools: Measuring Methods, Instruments, and Metrology</td>
</tr>
<tr>
<td>36.</td>
<td>3.1 Vision for the Next Decade</td>
</tr>
<tr>
<td>37.</td>
<td>3.2 Advances in the Last Ten Years and Current Status</td>
</tr>
<tr>
<td>38.</td>
<td>3.3 Goals, Barriers, and Solutions for the Next 5–10 Years</td>
</tr>
<tr>
<td>39.</td>
<td>3.4 Scientific and Technological Infrastructure Needs</td>
</tr>
<tr>
<td>40.</td>
<td>3.5 R&D Investment and Implementation Strategies</td>
</tr>
<tr>
<td>41.</td>
<td>3.6 Conclusions and Priorities</td>
</tr>
<tr>
<td>42.</td>
<td>3.7 Broader Implications for Society</td>
</tr>
<tr>
<td>43.</td>
<td>3.8 Examples of Achievements and Paradigm Shifts</td>
</tr>
<tr>
<td>44.</td>
<td>3.9 International Perspectives from Site Visits Abroad</td>
</tr>
<tr>
<td>45.</td>
<td>3.10 References</td>
</tr>
<tr>
<td>46.</td>
<td>Synthesis, Processing, and manufacturing of Components, Devices, and Systems</td>
</tr>
</tbody>
</table>
Table of Contents

35. 3.1 Vision for the Next Decade ... 65
36. 3.2 Advances in the Last 10 Years and Current Status .. 68
37. 3.3 Goals for the Next 5–10 Years: Barriers and Solutions 78
38. 3.4 Scientific and Technological Infrastructure Needs ... 80
39. 3.5 Research and Development Investment and Implementation Strategies 81
40. 3.6 Conclusions and Priorities .. 81
41. 3.7 Broader Implications of Nanotechnology Research and Development on Society 82
42. 3.8 Examples of Achievements and Paradigm Shifts ... 82
43. 3.9 International Perspectives from Site Visits Abroad ... 96
44. 3.10 References .. 100

Nanotechnology Environmental, Health, and Safety Issues 105

45. 4.1 Vision for the Next Decade .. 105
46. 4.2 Advances in the Last Ten Years and Current Status .. 107
47. 4.3 Goals, Barriers, and Solutions for the Next 5–10 Years 110
48. 4.4 Scientific and Technological Infrastructure Needs ... 121
49. 4.5 R&D Investment and Implementation Strategies .. 125
50. 4.6 Emerging Topics and Priorities .. 128
51. 4.7 Broad Implications for Society ... 133
52. 4.8 Examples of Achievements and Paradigm Shifts .. 134
53. 4.9 International Perspectives from the Overseas Workshops 144
54. 4.10 References ... 148

Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate 155
Table of Contents

55. 5.1 Vision for the Next Decade ... 155
56. 5.2 Advances in Last Ten Years and Current Status .. 157
57. 5.3 Goals, Barriers, and Solutions for the Next 5–10 Years ... 167
58. 5.4 Scientific and Technological Infrastructure Needs .. 172
59. 5.5 R&D Investment and Implementation Strategies .. 172
60. 5.6 Conclusions and Priorities .. 172
61. 5.7 Broader Implications for Society ... 173
62. 5.8 Examples of Achievements and Paradigm Shifts .. 173
63. 5.9 International Perspectives from Site Visits Abroad ... 179
64. 5.10 References .. 182

Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation187

65. 6.1 Vision for the Next Decade .. 187
66. 6.2 Advances in the Last 10 years and Current Status .. 189
67. 6.3. Goals, Barriers, and Solutions for the Next 5–10 Years ... 196
68. 6.4 Scientific and Technological Infrastructure Needs .. 200
69. 6.5 R&D Investment and Implementation Strategies .. 201
70. 6.6 Conclusions and Priorities .. 201
71. 6.7 Broader Implications for Society ... 202
72. 6.8 Examples of Achievements and Paradigm Shifts .. 203
73. 6.9 International Perspectives from Site Visits Abroad ... 212
74. 6.10 References .. 220

Applications: Nanobiosystems, Medicine, and Health ...224
Table of Contents

75. 7.1 Vision for the Next Decade .. 224
76. 7.2 Advances in the Last Ten Years and Current Status ... 228
77. 7.3 Goals, Barriers, and Solutions for the Next 5–10 Years ... 255
78. 7.4 Scientific and Technological Infrastructure Needs ... 257
79. 7.5 R&D Investment and Implementation Strategies ... 258
80. 7.6 Conclusions and Priorities ... 258
81. 7.7 Broader Implications for Society .. 259
82. 7.8 Examples of Achievements and Paradigm Shifts ... 259
83. 7.9 International Perspectives from Site Visits Abroad .. 270
84. 7.10 References .. 276

Applications: Nanoelectronics and Nanomagnetics ... 282
85. 8.1 Vision for the Next Decade ... 282
86. 8.2 Advances in the Last Ten Years, and Current Status ... 283
87. 8.3 Goals, Barriers, and Solutions for the Next 5–10 Years ... 291
88. 8.4 Scientific and Technological Infrastructure Needs .. 293
89. 8.5 R&D Investment and Implementation Strategies ... 294
90. 8.6 Conclusions and Priorities ... 297
91. 8.7 Broader Implications of Nanotechnology R&D on Society ... 297
92. 8.8 Examples of Achievements and Paradigm Shifts .. 299
93. 8.9 International Perspectives from Site Visits Abroad .. 308

Applications: Nanophotonics and Plasmonics .. 318
Table of Contents

94. 9.1 Vision for the Next Decade ... 318
95. 9.2 Advances in the Last 10 Years and Current Status 319
96. 9.3 Goals, Barriers, and Solutions for the Next 5-10 Years 323
97. 9.4 Scientific and Technological Infrastructure Needs 326
98. 9.5 R&D Investment and Implementation Strategies 328
99. 9.6 Conclusions and Priorities ... 328
100. 9.7 Broader Implications for Society ... 329
101. 9.8 Examples of Achievements and Paradigm Shifts 330
102. 9.9 International Perspectives from Site Visits Abroad 332
103. 9.10 References ... 338

Applications: Catalysis by Nanostructured Materials 341

104. 10.1 Vision for the Next Decade ... 341
105. 10.2 Scientific and Technological Advances in the Past Ten Years 342
106. 10.3 Goals, Barriers, and Solutions for the Next 5-10 Years 347
107. 10.4 Scientific and Technological Infrastructure 349
108. 10.5 R&D Investment and Implementation Strategies 349
109. 10.6 Conclusions and Priorities ... 350
110. 10.7 Broader Implications for Society ... 351
111. 10.8 Examples of Achievements and Paradigm Shifts 352
112. 10.9 International Perspectives from Site Visits Abroad 357
113. 10.10 REFERENCES .. 358

Applications: High-Performance Materials and Emerging Areas 361
114. 11.1 Vision for the Next Decade ... 361
115. 11.2 Advances in the Last Ten Years and Current Status ... 362
116. 11.3 Goals, Barriers, and Solutions for the Next 5–10 Years ... 367
117. 11.4 Scientific and Technological Infrastructure Needs .. 369
118. 11.5 R&D Investment and Implementation Strategies ... 370
119. 11.6 Conclusions and Priorities ... 371
120. 11.7 Broader Implications for Society ... 371
121. 11.8 Examples of Achievements and Paradigm Shifts .. 372
122. 11.9 International Perspectives from Site Visits Abroad .. 381
123. 11.10 References .. 386

Developing the Human and Physical Infrastructure for Nanoscale Science and Engineering ... 389

124. 12.1 Vision for the Next Decade ... 389
125. 12.2 Advances in the Last Ten Years and Current Status ... 391
126. 12.3 Goals, Barriers, and Solutions for the Next 5–10 Years ... 401
127. 12.4 Scientific and Technological Infrastructure Needs .. 407
128. 12.5 R&D Investment and Implementation Strategies ... 410
129. 12.6 Conclusions and Priorities ... 414
130. 12.7 Broader Implications for Society ... 417
131. 12.8 Examples of Achievements and Paradigm Shifts .. 417
132. 12.9 International Perspectives from site visits abroad .. 431
133. 12.10 References .. 437

Innovative and Responsible Governance of Nanotechnology for Societal Development 440
Table of Contents

134.13.1 Vision for the Next Decade .. 440
135.13.2 Advances in the Last Ten Years and Current Status .. 442
136.13.3 Goals, Barriers, and Solutions for the Next 5–10 Years .. 451
137.13.4 Scientific and Technological Infrastructure Needs ... 457
138.13.5 R&D Investment and Implementation Strategies .. 458
139.13.6 Conclusions and Priorities .. 458
140.13.7 Broader Implications for Society ... 460
141.13.8 Examples of Achievements and Paradigm Shifts .. 461
142.13.9 International Perspectives from Site Visits Abroad ... 477
143.13.10 References ... 483

Selected Bibliography (2000–2009) .. 488

Appendices .. 499
Appendix A. U.S. and International Workshops .. 499
Appendix B. List of Participants and Contributors .. 501
Appendix C. NNI Timeline in Selected Publications, 1999–2010 ... 520
Appendix D. NNI Centers, Networks, and Facilities .. 523
Appendix E. Glossary ... 528
Appendix F. Index of Authors .. 542
Appendix G. Index of Main Topics .. 544