John Mendel

Eastman Kodak


The object of the controlled assembly of nanoparticulates is to make materials with new properties and assemble them with practical applications. A unique value of nanoparticulates is their extremely high particle surface area; having many more sites for achieving property enhancements makes them ideal for a wide variety of applications as dispersions and coatings. Dispersive and coating applications of nanoparticles include optical, thermal, and diffusion barriers. Significant work on nanoscale dispersions and coatings is underway worldwide in the areas of ceramics, cosmetics, biosensors, colorants, and abrasion-resistant polymers. Other applications include imaging ink jet materials, electrophotography, pharmaceuticals, flavor enhancers, pesticides, lubricants, and other proprietary applications specific to industry. Still another application is in a new, post-silicon generation of electronic devices that includes nanotubes and fullerenes as constituent units of carbon nanoelectronic devices; here, dispersion takes on a more quantum consideration in which the number of atoms in a cluster is compared to the number of surface atoms to determine its dispersion function. Also in the semiconductor industry, a monolayer or thin film coating of atoms or molecules is deposited on foils, metal sheets, or glass to enhance storage capacity and accelerate responses from the electronic component.

All these applications deal with dispersions or coatings of particles that enhance specific features. Also, ability to manufacture smaller functional systems enhances performance, cost, and efficiency. These considerations power the drive towards miniaturization and precision finishing.

Published: September 1999; WTEC Hyper-Librarian