The spectrum of applications of expert systems technology to industrial and commercial problems is so wide as to defy easy characterization. The applications find their way into most areas of knowledge work. They are as varied as helping salespersons sell modular factory-built homes to helping NASA plan the maintenance of a space shuttle in preparation for its next flight.

Applications tend to cluster into seven major classes.

Diagnosis and Troubleshooting of Devices and Systems of All Kinds

This class comprises systems that deduce faults and suggest corrective actions for a malfunctioning device or process. Medical diagnosis was one of the first knowledge areas to which ES technology was applied (for example, see Shortliffe 1976), but diagnosis of engineered systems quickly surpassed medical diagnosis. There are probably more diagnostic applications of ES than any other type. The diagnostic problem can be stated in the abstract as: given the evidence presenting itself, what is the underlying problem/reason/cause?

Planning and Scheduling

Systems that fall into this class analyze a set of one or more potentially complex and interacting goals in order to determine a set of actions to achieve those goals, and/or provide a detailed temporal ordering of those actions, taking into account personnel, materiel, and other constraints. This class has great commercial potential, which has been recognized. Examples involve airline scheduling of flights, personnel, and gates; manufacturing job-shop scheduling; and manufacturing process planning.

Configuration of Manufactured Objects from Subassemblies

Configuration, whereby a solution to a problem is synthesized from a given set of elements related by a set of constraints, is historically one of the most important of expert system applications. Configuration applications were pioneered by computer companies as a means of facilitating the manufacture of semi-custom minicomputers (McDermott 1981). The technique has found its way into use in many different industries, for example, modular home building, manufacturing, and other problems involving complex engineering design and manufacturing.

Financial Decision Making

The financial services industry has been a vigorous user of expert system techniques. Advisory programs have been created to assist bankers in determining whether to make loans to businesses and individuals. Insurance companies have used expert systems to assess the risk presented by the customer and to determine a price for the insurance. A typical application in the financial markets is in foreign exchange trading.

Knowledge Publishing

This is a relatively new, but also potentially explosive area. The primary function of the expert system is to deliver knowledge that is relevant to the user's problem, in the context of the user's problem. The two most widely distributed expert systems in the world are in this category. The first is an advisor which counsels a user on appropriate grammatical usage in a text. The second is a tax advisor that accompanies a tax preparation program and advises the user on tax strategy, tactics, and individual tax policy.

Process Monitoring and Control

Systems falling in this class analyze real-time data from physical devices with the goal of noticing anomalies, predicting trends, and controlling for both optimality and failure correction. Examples of real-time systems that actively monitor processes can be found in the steel making and oil refining industries.

Design and Manufacturing

These systems assist in the design of physical devices and processes, ranging from high-level conceptual design of abstract entities all the way to factory floor configuration of manufacturing processes.

Published: May 1993; WTEC Hyper-Librarian